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Abstract

The biological immune system is a highly parallel and distributed adaptive system. The information processing abilities of the immune
system provide important insights into the field of computation. Based on immunodominance in the biological immune system and the
clonal selection mechanism, a novel data mining method, Immune Dominance Clonal Multiobjective Clustering algorithm (IDCMC), is
presented. The algorithm divides an individual population into three sub-populations according to three different measurements, and
adopts different evolution and selection strategies for each sub-population. The update of each sub-population, however, is not carried
out in isolation. The periodic combination operation of the analysis of the three sub-populations represents considerable advantages in
its global search ability. The clustering task is a multiobjective optimization problem, which is more robust with respect to the variety of
cluster structures of different datasets than a single-objective clustering algorithm. In addition, the new algorithm can determine the num-
ber of clusters automatically, which should identify the most promising clustering solutions in the candidate set. The experimental results,
using artificial datasets with different manifold structure and handwritten digit datasets, show that the IDCMC outperforms the PESA-
II-based clustering method, the genetic algorithm-based clustering technique and the original K-Means algorithm in solving most of the
problems tested.
� 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.
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1. Introduction

Unsupervised learning has attracted much interest from
evolutionary computation (EC) researchers [1–5]. Recently,
Handl and Knowles, for example, have proposed the mul-
tiobjective clustering technique MOCK [6], which shows
good performance for solving data clustering problems
unconventionally. They argue that the use of multiobjec-
tive optimization may provide a means to overcome some
of the limitations of current algorithms. The simultaneous
optimization of several complementary clustering objec-

tives may lead to higher quality solutions and a more
robust method of dealing with different data properties [7].

The biological immune system is a highly parallel and
distributed adaptive system. The information processing
abilities of the immune system provide important insights
into the field of computation. This emerging field is some-
times referred to as immunological computation, immuno-
computing, or artificial immune system (AIS). AIS which
use immune system components and processes as the
inspiration for constructing computational systems, have
received a significant amount of interest from researchers
and industrial sponsors in recent years. Applications of
AIS include machine learning [8], fault diagnosis, com-
puter security, scheduling, virus detection, and optimiza-
tion [9–11].
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To maximize the performance of an AIS for unsuper-
vised learning in real-world applications [12], one first has
to carefully design an AIS (or choose an existing AIS),
whose inductive bias is suitable for the target data and
application domain. This paper focuses on the effectiveness
of AIS in multiobjective clustering techniques. Multiobjec-
tive algorithms will always find solutions that are as good
as, or better than, those of single-objective algorithms. In
situations where the best solution corresponds to a trade-
off between different objectives, a multiobjective algorithm
is the only method that will be successful. Recently, an arti-
ficial immune system algorithm MISA [13] was proposed
based on the clonal selection principle [14] to solve multi-
objective optimization problems, and a vector artificial
immune system (VAIS) based on the multimodal optimiza-
tion algorithm opt-aiNet [16] was proposed by Freschi and
Repetto [15].

In this paper, we introduce a novel multiobjective clus-
tering algorithm, Immune Dominance Clonal Multiobjec-
tive Clustering algorithm (IDCMC). The experimental
results, using six artificial datasets with different manifold
structures and USPS handwritten digit datasets, show that
the novel algorithm outperforms the MOCK algorithm
based on PESA-II [17], the genetic algorithm-based cluster-
ing [18], and the K-Means algorithm [19] in solving most of
the test problems.

2. Multiobjective clustering

We consider the clustering task as a multiobjective opti-
mization problem, which seeks to minimize a vector of
functions,

ðP Þ min FðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fMðxÞÞT

subject to x 2 X

(
ð1Þ

where x is a clustering of a given set of data E, X is the set
of feasible clusterings, and fi; i ¼ 1; 2; . . . ;M is a set of M

different criterion functions. Usually, no single best solu-
tion for this optimization task exists, but the framework
of Pareto-optimality is embraced. It states that solution
xA 2 X dominates another solution xB 2 X (written as
xA � xB) if, and only if,

8i ¼ 1; 2; . . . ;M ; f iðxAÞ � fiðxBÞ ^ 9j ¼ 1; 2; . . . ;M ;

f jðxAÞ < fjðxBÞ ð2Þ

If no solution dominates xA, then xA is a Pareto-optimal
solution or nondominated solution. The set of all feasible
Pareto-optimal solutions is referred to as a true Pareto-
optimal set, while the corresponding image of objective
vectors is called a true Pareto-optimal front.

The first multiobjective clustering algorithm VIENNA
was based on PESA-II [17], and it uses two objectives.
Handl and Knowles fine-tuned one of the objectives used
in VIENNA, and also developed a method for determining
the number of clusters automatically. These developments
were incorporated in a new algorithm called MOCK [17].

MOCK consists of two main phases. In its initial clustering
phase, MOCK uses a multiobjective evolutionary algo-
rithm to optimize two complementary clustering objectives.
The output of this first phase is a set of mutually nondom-
inated clustering solutions, which correspond to different
trade-offs between the two objectives, and also to different
numbers of clusters. In the second model selection phase,
MOCK analyzes the shape of the trade-off curve and com-
pares it to the trade-offs obtained for an appropriate null
model. Based on this analysis, the algorithm provides an
estimate of the quality of all individual clustering solutions,
and determines a set of potentially promising clustering
solutions. Often, a single solution is clearly preferred and,
in these cases, the number of clusters inherent to the data-
set, k, is estimated implicitly.

In this paper, we select the two complementary objec-
tives based on compactness and connectedness of clusters,
respectively. The cluster compactness is simply computed
as the overall summed distance between data items and
their corresponding cluster center

DevðxÞ ¼
X
xk2x

X
i2xk

dði; lkÞ ð3Þ

where x is the set of all clusters, lk is the centroid of cluster
xk, and d(i,lk) is the Euclidean distance between the ith
data item of cluster xk and lk. As an objective, overall devi-
ation should be minimized. This criterion is similar to the
well-known criterion of intra-cluster variance, which
squares the distance value d(i,lk) and is more strongly
biased towards spherically shaped clusters.

The cluster connectedness metric evaluates the degree to
which neighboring data points have been placed in the
same cluster. It is computed as

ConnðxÞ ¼
XN

i¼1

XL

j¼1

xi;nij

 !
ð4Þ

where xr;s ¼
1
j ; if 9

:
xk : r 2 xk ^ s 2 xk

0; else

(
nij is the jth nearest

neighbor of datum I, N is the size of the clustered dataset,
and L is a parameter determining the number of neighbors
that contribute to the connectivity measure. Eq. (4) gives
more emphasis to the nearest neighbors, and its objective
is to minimize connectivity. It therefore permits a finer dis-
tinction between the qualities of clustering solutions and
allows for the identification of clusters of sizes significantly
smaller than L.

3. Terms and operators

3.1. Terms

3.1.1. Antigen

In AIS, antigens (Ag) refer to problems and their con-
straints. For multiobjective optimization problems, the
antigen is defined as the objective functions F(x) in Eq. (1).
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3.1.2. Antibody and antibody population

In AIS, antibodies (Ab) represent candidates of the prob-
lem. The limited-length character string a = a1a2. . .al is the
antibody encoding of variable x, denoted by a = e(x), and x
is called the decoding of antibody a, expressed as
x = e�1(a). Set I is called antibody space, namely a e I.
The antibody population A = {a1,a2, . . . ,an} e In is an n-
dimensional group of antibody a, namely,

In ¼ A : A ¼ ða1; a2; . . . ; anÞ; ak 2 I; 1 � k � nf g ð5Þ

where the positive integer n is the antibody population size.

3.1.3. Ab–Ag affinity

Ab–Ag affinity, i.e. the affinity between an antibody and
an antigen, is the reflection of the total combination power
between antigens and antibodies. In AIS, it generally indi-
cates the values of objective functions or fitness measure-
ment of the problem.

3.1.4. Ab–Ab affinity

Ab–Ab affinity, i.e. the affinity between two antibodies is
the reflection of the total combined power between two
antibodies. In this paper, we compute the Ab–Ab affinity
as in Ref. [10]. Namely, if the coding of an antibody ai is
‘1 1 0 0 0 0 1 0’, and the coding of another antibody adi

is ‘1 1 0 1 0 1 1 0’, then the number of genes matched
between the two antibodies is 6. The matched gene strings
whose lengths are greater than 2 are ‘110’ and ‘10’, and the
corresponding lengths are 3 and 2, so that the Ab–Ab affin-
ity between ai and adi is 6 + 32 + 22 = 19. If the coding of
antibodies is not a binary string, it should be converted
to a binary string in advance.

3.1.5. Immune dominance

For a problem (P), the antibody ai is an immune domi-
nance antibody in a population A = {a1,a2, . . . ,an}. If there
is no antibody ajðj ¼ 1; 2; . . . ; n ^ j–iÞ in an antibody pop-
ulation, A satisfies (6):

ð8k 2 f1; 2; . . . ; pgfkðe�1ðajÞÞ � fkðe�1ðaiÞÞÞ^
ð9l 2 f1; 2; . . . ; pgflðe�1ðajÞÞ < flðe�1ðaiÞÞÞ ð6Þ

So the immune dominance antibodies are the Pareto-
optimal individuals in the current population.

3.2. Operators

3.2.1. Clonal operation
In immunology, ‘‘clone” means asexual propagation, so

that a group of identical cells can be descended from a sin-
gle common ancestor, such as a bacterial colony whose
members arise from a single original cell as the result of
mitosis. In AIS, the clonal operation of the antibody pop-
ulation A(k) is defined as

Y ðkÞ ¼ T C
c ðAðkÞÞ ¼ T C

c ða1ðkÞÞ T C
c ða2ðkÞÞ; . . . ;T C

c ðanb
ðkÞÞ

� �T

ð7Þ

where T C
c ðaciðkÞÞ ¼ Ici � aciðkÞ; i ¼ 1; 2; . . . ;N , Ici is a qci-

dimensional identity row vector. The process is called the
qci clone of antibody ai, namely qciðkÞ ¼ �hðnc;HiÞ, where
Hi stands for the affinity function of antibody ai and other
antibodies, and nc is the clonal scale.

3.2.2. Immune differential degree

The immune differential degree denotes the relative dis-
tribution of an immune dominance antibody. Assuming
that there are nd immune dominance antibodies in the cur-
rent population, fkl is the value of the kth objective func-
tion of the lth antibody. The immune differential degree
of the lth antibody al can be calculated as follows:

d�l ¼ min
dlðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq
k¼1

/ðfklÞ�/ðfkmÞ
/ðfklÞ

� �2
s

jl ¼ 1; 2; . . . ; nd; m ¼ 1; 2; . . . nd ^ m–l

8><
>:

9>=
>;
ð8Þ

where /(�) is an incremental function without the value of
zero.

4. Description of the algorithm

Inspired by the concept of immunodominance from the
biological immune system and the clonal selection mecha-
nism, IDCMC is based on clonal selection with immune
dominance and clone anergy for the multiobjective cluster-
ing problems, which can be implemented as follows:

Step 1. Give the termination generation Gmax, the size of
the immune dominance antibody population nd, the size of
the generic antibody population nb, the size of the domi-
nance clonal antibody population nt, and the clonal scale
nc. Set the mutation probability pm and the recombination
probability pc. Generate the original antibody population
Að0Þ ¼ a1ð0Þ; a2ð0Þ; . . . ; anb

ð0Þ
� �

2 Inb , k := 0.
Step 2. Compute the Ab–Ag affinity of all the antibodies

in A(k).
Step 3. According to the affinities, select all the immune

dominance antibodies to constitute the population DT(k);
if the number of antibodies in DT(k) is no larger than nd,
let the immune dominance antibody population
D(k) = DT(k), go to Step 6; otherwise go to Step 4.

Step 4. Compute the immune differential degrees of all
the antibodies in the population DT(k).

Step 5. Sort all the antibodies in DT(k) in the descending
order of their immune differential degrees, and select the
first nd antibodies as the current immune dominance anti-
body population D(k).

Step 6. If k = Gmax, export D(k) as the output of the
algorithm, then stop; otherwise, replace the immune dom-
inance antibody in A(k) by new antibodies generated ran-
domly. Then mark the antibody population as B(k).

Step 7. Select an immune dominance antibody adi ran-
domly from D(k). Compute the Ab–Ab affinity between
the antibodies in B(k) and the antibody adi.
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Step 8. Sort all the antibodies in B(k) in the descending
order of their Ab–Ab affinity, select the first nt antibodies
to constitute the dominance clonal antibody population
TC(k), and the other antibodies to constitute the immune
anergy antibody population NR(k).

Step 9. Implement the antibody clonal operation T C
c at

TC(k) according to Ab–Ab affinity and the clonal scale, and
get the antibody population CO(k) after clonal operation.

Step 10. Implement the recombination operation at
CO(k) with the probability pc and get the antibody popula-
tion CO 0(k), CO0ðkÞ ¼ T C

r ðCOðkÞÞ; namely, for the antibody
yi(k) in CO(k), the following operation is implemented:\

y0iðkÞ ¼ T C
r ðyiðkÞ; adiðkÞÞ ¼ crossoverðyiðkÞ; adiðkÞÞ;

yiðkÞ 2 COðkÞ; adiðkÞ 2 DðkÞ ð9Þ
where crossoverðyiðkÞ; adiðkÞÞ; i ¼ 1; 2; . . . ; nc denotes select-
ing equiprobably one individual from the two offspring
generated by a general crossover operator [20] on clone
yi(k) and an active antibody selected randomly from D(k).

Step 11. Implement the mutation operation at CO0(k)
with the probability pm and get the antibody population
COT(k), COTðkÞ ¼ T C

mðCO0ðkÞÞ.
In this study, we use a static hypermutation operator

[20] on the clone population after recombination, viz. the
number of mutations is independent of the fitness values.

Step 12. Combine the populations COT(k), D(k) and
NR(k) to form the antibody population A(k+1),
k :¼ k þ 1, then go to Step 2.

IDCMC applies different update strategies to the three
populations. At the beginning of IDCMC, the combination
of COT(k), D(k) and NR(k) is propitious for increasing the
global search ability. The update of the immune dominance
antibody population remains the diversity of nondominat-
ed individuals. The update of the dominance clonal anti-
body population can select the dominant niche and
assure the validity of the local search in the next genera-
tion. The existence of the immune anergy antibody popula-
tion preserves the population diversity.

After running as normal until the maximum number of
generations is reached, IDCMC returns a set of clustering
solutions. These individual partitions correspond to differ-
ent trade-offs between the two objectives and, in our case,
also consist of different numbers of clusters. We apply an
automated method for assessing the quality of individual
clustering solutions proposed by Handl and Knowles [17].
This method can be used to identify one or more promising
clustering solutions in the candidate set [21]. The selection
of a single solution then automatically delivers an estimate
of the number of clusters inherent in the dataset [22,23].

5. Analysis of the algorithm

5.1. Fitness assignment and population evolution

It can be seen that IDCMC uses some outstanding tech-
niques on fitness assignment and population evolution,
such as storing the nondominated solutions that were

previously found externally and performing clustering to
reduce the number of nondominated solutions stored with-
out destroying the characteristics of the trade-off front.
Other features of IDCMC can be characterized as follows:

(i) Its fitness values of current dominated individuals are
assigned as the values of a custom distance measure,
termed Ab–Ab affinity, between the dominated indi-
viduals and one of the nondominated individuals
found so far.

(ii) All dominated individuals (antibodies) are divided
into two kinds, dominance clonal antibodies and
immune anergy antibodies, according to the values
of Ab–Ab affinity.

(iii) Local search only applies to the dominance clonal
antibodies. The immune anergy antibodies are redun-
dant and have no function during local search, but
they can become dominance clonal antibodies during
the subsequent evolution.

(iv) A new immune operation, antibody clonal operation,
is provided to enhance local search. Using the anti-
body clonal operation, IDCMC reproduces individu-
als and selects their improved matured progenies after
local search. This allows single individuals to exploit
their surrounding space effectively and the newcomers
yield a broader exploration of the search space.

5.2. Population diversity

To approximate the Pareto-optimal set in a single run,
multiobjective optimization evolutionary algorithms
(MOEAs) have to perform a multimodal search where
multiple, widely different solutions should be found. There-
fore, maintaining a diverse population is crucial for the effi-
cacy of an MOEA [24].

IDCMC adopts three strategies to preserve the popula-
tion diversity. For the immune dominance antibody popula-
tion, in the initial stage, we give a rough immune dominance
antibody population, and make the immune dominance
antibody population follow exactly along with the evolution
search. This process is an interactive course, which is
evolved through the concept of immune dominance.

By applying the strategies of clonal recombination and
mutation to the dominance clonal antibody population,
the algorithm can search locally or globally in many direc-
tions around one parent. Searching ability is very good,
which makes the antibodies in the antibody population
evolve quickly.

For the immune anergy antibody population, we do not
adopt any operation, and the only purpose is to retain the
diversity of the current antibody population and to main-
tain the forward progression of the evolution course.

5.3. Computational complexity

Analyzing IDCMC’s computational complexity is reveal-
ing. In this section, we consider only the population size in
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computational complexity. Assuming that the generic anti-
body population size is nb, the immunodominant antibody
population size is nd, the dominance clonal antibody size is
nt, the immune anergy antibody population size is nb � nt,
and the clone scale is nc, then the time complexity of one iter-
ation for the algorithm can be calculated as follows:

The time complexity for calculating Ab–Ag affinities is
O(nb). The worst time complexity for the update of the
immunodominant antibody population is O((nd +
nt � nc)

2). The time complexity for calculating the Ab–Ab
affinities of all dominated antibodies is O(nb � nt + nt � nc).
The worst time complexity for the updated dominance clonal
antibody population and immune anergy antibody popula-
tion is O((nd + nb � nt + nt � nc) log(nd + nb � nt + nt

� nc)). The time complexity for the clonal operation is
O(nt � nc), and the time complexity for the recombination
and mutation operation is O(nt � nc). Thus, the worst total
time complexity is

OðnbÞ þ Oððnd þ nt � ncÞ2Þ þ Oðnb � nt þ nt � ncÞ
þ Oððnd þ nb � nt þ nt � ncÞ logðnd þ nb � nt þ nt � ncÞÞ
þ Oðnt � ncÞ þ Oðnt � ncÞ ð10Þ

According to the operational rules of the symbol O, the
worst time complexity of one generation for IDCMC can
be simplified as follows:

Oððnd þ nt � ncÞ2Þ þ Oððnd þ nb � nt þ nt � ncÞ
� logðnd þ nb � nt þ ns � ncÞÞ ð11Þ

If we denote the total size of all populations as N,
namely, N = nd + nb � nt + nt � nc, then the computa-
tional complexity of IDCMC is

Oððnd þ nt � ncÞ2Þ þ Oððnd þ nb � nt þ nt � ncÞ
� log ðnd þ nb � nt þ ns � ncÞÞ < OðN 2Þ ð12Þ

6. Experimental study

6.1. Evaluation function of clustering performance

Clustering quality is evaluated using the adjusted Rand
index (ARI) [25], which is a generalization of the Rand
index [7]. The Rand indices take two partitionings as the
input and count the number of pair-wise co-assignments
of data items between the two partitionings. The adjusted
Rand index additionally introduces a statistically induced
normalization in order to yield values close to 0 for random
partitions. Using a representation based on contingency
tables [7], the adjusted Rand index is given as

RðU ;V Þ¼

P
lk

nlk

2

	 

�
P

l

nl�

2

	 
P
k

n�k
2

	 
�� 
n

2

	 


1
2

P
l

nl�

2

	 

þ
P

k

n�k
2

	 
� �
�
P

l

nl�

2

	 
P
k

n�k
2

	 
�� 
n

2

	 
 ð13Þ

where nlk denotes the number of data items that have been
assigned to both cluster l and cluster k. The adjusted Rand
index return value in the interval [1] is to be maximized. Let

the true clustering be Dtrue ¼ fCtrue
1 ;Ctrue

2 ; . . . ;Ctrue
ktrue
g and the

clustering produced be D¼fC1;C2;...;Ckg. 8i2½1;...;ktrue�;
j2½1;...;k�, Confusion (i, j) denotes the number of the same
data points both in the true cluster Ctrue

i and in the cluster
Cj produced. Then, the clustering error (CE) is defined as

CEðD;DtrueÞ ¼ 1

n

Xktrue

i¼1

Xk

j¼1
i–j

Confusionði; jÞ ð14Þ

where n is the total number of data points. Note that there
exists a renumbering problem. For example, cluster 1 in the
true clustering might be assigned cluster 3 in the clustering
produced. To counter this, the CE is computed for all
possible renumbering of the clustering produced, and the
minimum of all these is taken.

6.2. Simulation on artificial datasets

We present first the experimental results on six artificial
datasets, named Long1, Square4, Size5, Sticks, Line-blobs
and Three-circles in order to study a range of different
interesting data properties. For illustrations of these
demanding problems, see Handl [26]. In our experiments,
we compare IDCMC with two classical clustering algo-
rithms with proven performance across a wide range of
datasets, the genetic algorithm-based clustering (GAC)
[18] and the K-Means algorithm (KM) [19]. Moreover, to
establish the usefulness of IDCMC, we also compare it
with a multiobjective approach PESA-II based on the clus-
tering method (PESC) [17]. In GAC and KM, the desired
clusters number is set in advance.

For fair play, both IDCMC and PESC use the locus-
based adjacency representation [17] and the initialization
method based on minimum spanning trees [17]. The
parameter settings used for IDCMC are as follows: the
terminal generation Gmax = 100, immune dominance anti-
body population size nd = 100, generic antibody popula-
tion size nb = 100, dominance clonal antibody population
size nt = 50, maximum number of clusters 20, clonal scale
nc = 300, mutation probability pm = 1/N, where N is the
size of the dataset, and recombination probability
pc = 0.7. For PESC, the number of generations is 100,
external population size is 100, internal population size is
100, maximum number of clusters is 20, mutation probabil-
ity is 1/N, and recombination probability is 0.7. For GAC,
the number of generations is 100, population size is 50,
recombination probability is 0.7, and mutation probability
is 0.1. For KM, the maximum iterative number is set to
500, and the stop threshold 1e�10. Both algorithms are
run 30 times for each of the candidate parameters. The
average results are shown in Table 1.

The results of the ARI are presented graphically as box-
plots [27] in Fig. 1. We can see clearly that on most data-
sets, the solutions generated by IDCMC are better than
those of the other algorithms by a large margin. On Long1,
Sticks, Line-blobs and Three-circles, its superiority is clear.
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By comparison, GAC did best only on the Square4 dataset
and PESC did best only on the Sizes5 dataset. KM and
GAC only obtained desired clustering for the two spheroid
datasets, i.e. Size5 and Square4, even though the desired

clusters number is set in advance for GAC and KM. This
is due to the complex structure of the other four datasets,
which does not satisfy the super-sphere distribution. On
the other hand, IDCMC and PESC can successfully recog-
nize these complex clusters. When comparisons are made
between IDCMC and PESC, the average value of ARI in
solving the Long1, Sticks and Line-blobs obtained by
IDCMC is 1, this shows that IDCMC can obtain the true
clustering on the three problems in all the 30 runs. For the
Long1, Square4, Sticks, Line-blobs and Three-circles,
IDCMC did slightly better than PESC, but for Sizes5,
IDCMC performed a little worse than PESC.

6.3. Simulation on handwritten digit datasets

We also performed experiments on a USPS handwritten
digit dataset [28]. The USPS dataset contains 9298 16 � 16

Table 1
Performance comparisons of IDCMC, PESC, GAC and KM on artificial
datasets.

Problem Clustering error

IDCMC PESC GAC KM

Long1 0 0.020 0.445 0.486
Square4 0.086 0.090 0.062 0.073
Size5 0.015 0.007 0.023 0.024
Sticks 0 0.027 0.277 0.279
Line-blobs 0 0.013 0.263 0.256
Three-circles 0.008 0.014 0.569 0.545

Note. Results in bold are the best.

Fig. 1. Boxplots giving the distribution of ARI values achieved for 30 runs of each algorithm on artificial datasets.
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gray images of handwritten digits (7291 for training and
2007 for testing). The test set is taken as the clustering data.
We selected three hard datasets to recognize datasets {0,8},
{3,5,8}, {3,8,9}, and three relatively easy ones to recog-

nize datasets {1,2,3,4}, {1,2,4,8}, {0,2,4,6,7}. The
parameter settings were the same as those indicated in Sec-
tion 6.2, and both algorithms were run 30 times for each of
the digit datasets. The average values of clustering error
achieved by IDCMC, PESC, GAC and KM on the six
datasets are reported in Table 2. Fig. 2 visualizes the distri-
bution of ARI values obtained by the different algorithms.

From Table 2 and Fig. 2, we can see clearly that on all
datasets, whether hard or simple, the solutions generated
by IDCMC have a better performance compared with
those generated by PESC, GAC and KM. PESC is the sec-
ond best, and KM is the worst. The latter result is because
KM attempts to minimize the summed variance of points
within each cluster from its centroid. Although such a
method is very effective on certain sets of data, it is not
robust enough to cope with variations in cluster shape, size,
dimensionality and other characteristics.

Table 2
Performance comparison of IDCMC, PESC, GAC and KM on real-world
datasets.

Problem Clustering error

IDCMC PESC GAC KM

{0,8} 0.022 0.039 0.105 0.191
{3,5,8} 0.089 0.096 0.275 0.352
{3,8,9} 0.099 0.120 0.207 0.386
{1,2,3,4} 0.044 0.056 0.204 0.304
{1,2,4,8} 0.034 0.058 0.207 0.307
{0,2,4,6,7} 0.096 0.135 0.168 0.202

Note. Results in bold are best.

Fig. 2. Boxplots showing the distribution of ARI values achieved for 30 runs of each algorithm on the USPS handwritten digit datasets.
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7. Conclusions

Based on the artificial immune system, a novel multi-
objective clustering algorithm, immune dominance clonal
multiobjective clustering algorithm is put forward. The
clustering task is considered as a multiobjective optimi-
zation problem, which is more robust with regard to
the variety of cluster structures of different datasets in
comparison with the single-objective clustering algo-
rithm. IDCMC is characterized by its unique fitness
assignment strategy based on the Ab–Ab affinity and
by its enhanced local research around nondominated
individuals found so far using the clonal operation. In
addition, the novel algorithm can determine the number
of clusters automatically, which should identify the most
promising clustering solutions in the candidate set. We
demonstrated the clustering performance of IDCMC by
an experimental study on six artificial datasets and on
handwritten digit datasets. The results were compared
with those of the PESA-II-based clustering method, the
genetic algorithm-based clustering technique and the ori-
ginal K-Means algorithm. The experimental results of
adjusted Rand index and clustering error indicate that
IDCMC outperforms the other three clustering algo-
rithms in solving most of the test problems.
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